

CISE IV
Circuits i Sistemes
Electrònics IV

Manual de Pràctiques

Manel Domínguez, Antoni Mas

 2

Historial del document

Data Ver. Responsable Descripció

11/04/2008 1.0 M. Domínguez, A. Mas Versió inicial

Contingut

1. Objectiu de les Pràctiques
2. Breu descripció de la placa de Pràctiques
3. Depuració i Programació amb l’entorn Eclipse
4. Control dels displays de set segments
5. Timer0 i Timer1 + Vectored Interrupt Controller
6. Cicles de bus externs al LPC2292
7. Teclat (OPCIONAL)
8. Altaveu (OPCIONAL)
9. Convertidors A/D (OPCIONAL)
10. Bus SPI: Serial Peripheral Interface (OPCIONAL)

 3

1. Objectiu de les Pràctiques

Introducció

L’ús de sistemes basats en microprocessador/microcontrolador requereix coneixements de programació. Els objectius de les
pràctiques són:

a) introduir un entorn de programació professional, l’Eclipse,
b) practicar aspectes de programació elemental de sistemes basats en microcontrolador, i
c) analitzar cicles de bus d’un microcontrolador amb un analitzador lògic.

Aspectes clau són la gestió dels tipus d’interrupcions i la seva prioritat, el mapa de memòria d’un sistema
microprocessador, el control dels perifèrics bàsics, els cicles de bus i l’adaptació de la velocitat entre el processador i els
dispositius connectats en els seus busos (principalment memòries) mitjançant el control dels estats d’espera i altres recursos
semblants.

Les sessions estan enfocades a objectius molt concrets. Aquest manual conté la majoria de les dades imprescindibles per
comprendre el que cal fer i tenir a l’abast la informació imprescindible per realitzar el treball. En algunes ocasions serà
aconsellable ampliar la informació utilitzant els fitxers addicionals com són el Manual d’usuari o el datasheet del LPC2292.

Documentació a lliurar

En acabar cada sessió, i en el termini que el professor de pràctiques estipuli, el grup de pràctiques haurà de proporcionar al
professor el resultat del seu treball: ja sigui uns fitxers comprimits en format .ZIP o .RAR, o documentació escrita.

La memòria final ha de respondre a totes les qüestions plantejades a les sessions, exposar els resultats i les incidències del
treball realitzat i explicar qualsevol aspecte que,a judici dels alumnes, calgui ressaltar per a la correcta avaluació del treball.

El projecte de SW o programa realitzat (més d’un si és el cas) correspondrà a les especificacions plantejades. S’ha de poder
compilar sense errors i verificar el seu funcionament sobre el material de practiques. En cas contrari, no es considerarà
vàlid.

Tot els treballs han de ser originals i haver estat realitzats al llarg de la sessió de pràctiques.

Avaluació

L’avaluació es farà atenent als següents criteris:

a) (30%) Compliment dels objectius específics demanats al manual de pràctiques.
b) (30%) Qualitat de la programació realitzada: fer servir bones tècniques de programació (ús mínim de variables

globals, claredat i eficiència del programa, etc.)
c) (15%) Innovació, originalitat, i/o haver fet algun(s) apartat(s) opcional(s).
d) (15%) Memòria final.
e) (10%) Control de pràctiques.

Hi ha 4 apartats obligatoris: els 3,4,5 i 6. Es recomana fer algun dels apartats opcionals.

Es pot fer cadascun dels apartats obligatoris en una sessió (hi ha 4 sessions en total).

 4

2. Breu descripció de la placa de Pràctiques

La placa d’evaluació que s’utilitzarà als treballs de laboratori és la LPCEB2000-I, de la casa Embest Info&Tech Co., LTD
(http://www.armkits.com/), implementada per al desenvolupament dels microcontroladors LPC2000 de Philips que es
basen en el núcli de CPU (CPU-core) ARM7TDMI-S de 16/32 bits. L’apecte físic i el diagrama d’aquesta placa “mare” es
dóna a les següents 2 figures.

El hardware que presenta aquesta placa és el següent:

- Regulador de tensió de +5V per a una entrada d’alimentació de +9V.
- 2 ports sèrie (UARTs de comunicació sèrie asíncrona).
- Port CAN (Controller Area Network)
- Polsador de Reset i teclat 4x4.
- 8 indicadors LED.
- 2 canals per a senyal analògica (amb convertidors A/D).
- 2 canals amb sortida PWM (Pulse-Width Modulation); un a un brunzidor, l’altre a un

convertidor D/A amb PWM.
- Bus serie I2C (Inter-Integrated Circuits)
- Visualitzador LED amb 8dígits de 8 segments.
- Sortida analògica a un altaveu.
- Port JTAG (Joint Test Action Group) estàndard de 20 pins a través del qual executarem i depurarem els codis dels

nostres programes.
- 2 sòcols connectors per a expansió de la placa del mòdul microcontrolador.
- Placa “filla” del mòdul microcontrolador LPCEB2000-B, l’aspecte físic i l’enumeració de components de la qual

es presenten a continuació:

 5

o Microcontrolador LPC2292 de Philips basat en el núcli de CPU (CPU-core) ARM7TDMI-S de 16/32
bits.

o Cristall de quars de 10 MHz.
o Memòria Flash externa AT49BV162A (1M x 16 bits).
o Memòria SRAM externa IS61LV25616 (256K x 16 bits).
o Reguladors de tensió de 3,3V i 1,8V per a una entrada de alimentació de +5V.
o LED indicador de alimentació.
o 3 connexions tipus jumper per a JTAG (activat/desactivat), TRACE (activat/desactivat) i BOOT (des de

la memòria Flash externa/interna).
o 4 sòcols connectors J1 – J4 (2 de 10x2 pins i 2 de 20x2 pins).

La següent figura presenta el diagrama de blocs intern del microntrolador LPC2292.

 6

3. Depuració i programació amb l’entorn ECLIPSE

Objetius concrets:

- Entendre el funcionament bàsic de l’entorn Eclipse, aplicat a sistemes ‘embedded’,
- Compilar i executar un programa de prova a la placa.

Compiladors creuats

Volem compilar i depurar un programa a la placa LPCEB2000. El microcontrolador que es fa servir és el LPC2292 de
Philips, que es basa en el ARM7TDMI. Com que totes les eines que farem servir per compilar i depurar es troben al PC,
que fa servir un microprocessador Intel Pentium 4, vol dir que hem de fer servir un compilador creuat:

Definició: un compilador creuat és un programa que s’executa a un microprocessador per tal de compilar programes
que s’executaran a un altre microprocessador.

En el nostre cas el compilador és el ‘arm-elf-gcc’. Podeu provar a executar a una finestra de DOS:

‘arm-elf-gcc -v’ i ‘arm-elf-gcc --version’

Aquest compilador agafarà el nostre codi, en C, i el compilarà a un PC per tal que es pugui executar a la nostra placa,
que té un microprocessador diferent. Obviament, això implica que els executables generats per aquest compilador NO
es poden executar al PC.

Depuració de programes amb JTAG

El acrònim JTAG vol dir ‘Joint Test Action Group’, i és la norma IEEE 1149.1. S’utilitza, entre altres coses, per
depurar programes a microprocessador com el ARM7TDMI. Amb aquest standard, el hardware i el software necessaris
podem parar l’execució del microprocessador, carregar un programa, executar pas a pas, fer un volcat de la memòria,
etc.

El connexionat és el següent:

a) Al PC es connecta un cable USB que va al JTAG Amontec Tiny
(http://www.amontec.com/jtagkey-tiny.shtml, o busqueu ‘Amontec tiny’ a Google). Aquest
dispositiu fa de pont entre el PC i el interface JTAG del microprocessador.

b) El JTAG Amontec tiny, està connectat a la placa, tal i com us indicarà el professor de pràctiques.

Programes instal·lats

L’entorn de programació que farem servir és diu Eclipse (http://www.eclipse.org). És un entorn creat per IBM a l’any
2001. A l’any 2004 IBM va fer una donació per tal que aquest projecte esdevingués software obert. Permet compilar i
depurar programes a un nombre elevat de plataformes, i com que és software lliure es manté per la comunitat i té
constants millores i noves versions.

En el nostre cas els programes instal·lats són:

a) Driver d’Amontec lliure, basat en els drivers FTDI D2XX, per poder-se connectar mitjançant el bus USB a

l’Amontec JTAG tiny.

b) OpenOCD: Software intermig, entre Eclipse i els drivers, per tal de poder controlar el microprocessador amb

l’interface JTAG. Aquest programa va ser creat per Dominic Rath (http://OpenOCD.berlios.de/web/) i permet
manegar, entre d’altres al microcontrolador LPC2292 de les pràctiques.

 7

La versió instal·lada als ordinadors de pràctiques prové de la compilació YAGARTO: ‘Yet another GNU ARM
toolchain’ que podeu trobar a http://www.yagarto.de.

c) Entorn Eclipse: Entorn de programació global, basat en Java.

Execució entorn Eclipse

Obriu el programa Eclipse. A la següent finestra indiquem el que serà el nostre directori de treball (a la nostra zona, no
local al PC). Si activem l’opció de que no torni a fer la pregunta una altra vegada, usarem sempre el mateix directori
com a directori de treball (opció recomanada).

A continuació s’obrirà la finestra principal de l’Eclipse (la podeu veure a la figura). Hem d’obrir el ‘Workbench’.

 8

La finestra prendrà la següent forma:

La perspectiva que ens ofereix ara l’Eclipse és la de ‘recursos’. Ens interessa obrir la perspectiva de C/C++.

A la nova perspectiva podrem tenir projectes de programes en C, editar els fitxers i compilar-los.

 9

Seleccioneu C/C++:

El resultat és una finestra com aquesta:

Com podem veure l’entorn està buit. No hi tenim cap projecte ni cap programa. Per tant, el que farem és crear el nostre
primer projecte d’Eclipse. Aneu a File->New Project->C project, tal i com podeu veure a la següent figura:

 10

I seleccioneu que voleu un projecte C, basat en makefile i fent servir ‘--Other Toolchain --‘. Li podeu donar el nom de
‘test’ a aquest nou projecte.

 11

El resultat és que ara tenim un projecte nou, que està buit: no té cap fitxer C, ni res. El que farem serà agafar un projecte
senzill, ja adequat per a la nostra placa, i l’importarem. Aquest projecte es troba al fitxer ‘LPCEB-test.rar’ que trobareu
al directori de l’assignatura. L’heu de copiar a la vostra zona i descomprimir-lo.

Un cop fet això, l’importem fent: File->Import. S’obrirà la següent finestra, a on indiquem que volem importar fitxers

d’un sistema de fitxers.

Farem servir com a projecte inicial el que es troba al fitxer LPCEB-test.rar, que trobareu a l’Atenea. Descomprimim el
fitxer i a continuació seleccionem el directori a on s’hagin descomprimit els nostres fitxers:

i importarem tots els fitxers que ens donen per triar. Hem d’especificar la carpeta de destí, i posem el nom del projecte
que acabem de crear (‘test’). Amb aquesta operació, el programa copia els fitxers, amb la seva estructura de directoris,
al nostre directori de treball, i serà amb aquests amb els que treballarem (no amb els originals allà on s’hagin
descomprimit).

 12

Si ens pregunten sobre si sobreescriure cap fitxer, diguem que si: ‘Yes To All’.

El resultat és:

 13

Podem ‘clicar’ sobre el ‘+’ de test per veure tots els fitxers interns del projecte:

i obrir el fixer ‘main.c’, fent doble clic. Com podeu veure és un programa extremadament senzill.

 14

Compilació del projecte ‘test’

Ara volem compilar, amb el compilador creuat que hem dit a la introducció, arm-elf-gcc, el nostre programa. El que
farem és començar assegurant-nos que el compilador configurat a l’Eclipse és l’adequat. Anem a Project->Properties.

La finestra que sortirà és la següent. Hem de veure que el ‘Compiler invocation command’, està dirigit cap al ‘arm-elf-
gcc.

 15

Un cop comprovat el compilador, ja podem compilar el projecte. Per això seleccionarem: Project->Build All.

I el programa es començarà a compilar. ‘Make’ és la utilitat que fa ser l’Eclipse per compilar, junt amb un fitxer del
projecte que es diu ‘makefile’. Podeu trobar-ne informació a: "Make (software)." Wikipedia, The Free Encyclopedia. 8
Apr 2008, 13:20 UTC. Wikimedia Foundation, Inc. 11 Apr 2008
<http://en.wikipedia.org/w/index.php?title=Make_%28software%29&oldid=204207337>. A la part de baix de l’entorn
Eclipse podem veure el resultat de la compilació.

El compilador de fet segueix els passos descrits al fitxer ‘makefile’. Obriu-lo i observeu-ne el contingut. Són fitxers
francament complicats. Aquesta és la manera típica de compilar, per exemple, en entorns Linux. No farem res més per
ara amb aquest fitxer.

El resultat de la compilació hauria de ser similar a:

Un resum bàsic del procés que s’ha fet és:

- Compilar el fitxer main.c
- Compilar el fitxer Interrupt.s (en assemblador de l’ARM)
- Compilar el fitxer crt.s (en assemblador de l’ARM)
- ‘Linkar’ tots tres fitxers objectes per obtenir el fitxer final test.hex i test.elf, que es poden carregar directament a

la placa i ser executats.

Pregunta: Trobeu el fitxer a on s’indica a partir de quina adreça es carregarà el programa a la placa.

 16

Depuració del projecte ‘test’

Ara volem depurar el programa que acabem de compilar. Per això obrirem la perspectiva de ‘Debug’ de l’Eclipse.

El resultat és el següent:

 17

Ara, però, ens trobem amb un problema. Tot i que l’entorn Eclipse és molt potent, no està directament preparat per tractar
amb cap sistema embedded en concret. Tot i així, podem fer servir més eines, en conjunció amb l’Eclipse, per tal que això
sigui possible. Això implica versatilitat per part de l’Eclipse.

L’eina que farem servir és el OpenOCD (Open On-Chip Debugger). Aquest és un programa, que fa d’interface entre
l’Eclipse i la nostra plataforma basada en l’ARM. La comunicació entre l’Eclipse i el OpenOCD es fa per TCP-IP, amb un
port local del propi ordinador. És obvi que això pot permetre l’execució de pràctiques de manera remota. Per executar el
OpenOCD, obrirem una finestra de DOS i executarem:

‘openocd-ftd2xx.exe -f lpc2xxx_jtagkey.cfg’

al directori a on s’hagi instal·lat el OpenOCD. Observeu el contingut del fitxer ‘lpc2xxx_jtagkey.cfg’. Aquest fitxer li
indica al OpenOCD certa configuració per poder-se connectar a la nostra placa mitjançant l’Amontec JTAG Tiny.

El programa es queda per tant executant-se i anirà donant missatges conforme anem depurant el nostre projecte.

Tornem a l’Eclipse. Ara, li hem de dir que s’ha de connectar via TCP-IP amb el OpenOCD, i acabar-lo de configurar.
Aquesta operació només l’haurem de fer una vegada. Després el programa ja guarda tots aquests detalls.

Anem a la icona del ‘bug’ i cliquem al triangle de la dreta (un triangle petit). Seleccionem: ‘Open Debug Dialog’:

 18

S’obrirà la següent finestra:

Hem de fer doble click sobre ‘Zylin Embedded debug (Native)’, i apareixerà el ‘test Default’. Aquest serà el fitxer de
configuració de les depuracions pel projecte ‘test’. En cas que no surti el nom del projecte, o el fitxer de l’aplicació,
empleneu els apartats tal i com es veu a la figura anterior (‘test’ i ‘test.elf).

Canviem a l’apartat ‘Debugger’ i deixeu la finestra tal i com apareix a la figura anterior. El debugger que farem servir
és el ‘arm-elf-gdb’, un depurador creuat. Esborreu el nom del fitxer ‘.gdbinit’ al ‘GDB command file’.

 19

A l’apartat ‘Commands’ li hem de dir a l’Eclipse que es comunicarà amb un altre programa, en el nostre cas el
OpenOCD que ja tenim obert a la finestra DOS, mitjançant l’adreça IP local: ‘localhost’ i el port 3333. Això vol dir que
entre l’Eclipse i el OpenOCD s’estableix una comunicació TCP/IP local al mateix PC. El port que es fa servir és el
3333.

A més, hem de dir a l’Eclipse quines ordres ha d’enviar al OpenOCD. La llista d’ordres és la següent:

target remote localhost:3333
monitor reset
monitor sleep 500
monitor poll
monitor soft_reset_halt
monitor arm7_9 sw_bkpts enable
monitor mww 0xE01FC040 0x0002
monitor mdw 0xE01FC040
break main
load

Copiarem aquestes ordres les trobareu al fitxer ‘ordres.txt’ que hi ha al LPCEB-test.RAR. Les heu de copiar a la finestra
tal i com es pot veure a la següent figura:

I prémer ara el botó de ‘Debug’. El programa es carregarà a la placa i aniran sortint missatges a la part de baix de la
finestra.

 20

A la pantalla hauríem de veure el següent:

Entre les comandes que hem ficat cap el OpenOCD hi ha ‘break main’. Això posa un breakpoint al ‘main’ del nostre
programa. Per tant quan premem el símbol similar a un botó de ‘play’ l’execució es pararà a l’inici del nostre programa:

 21

La franja de color blau de la línia de programa ‘a=2;’, vol dir que el depurador ha parat l’execució en aquest punt.

Podem executar pas a pas amb les fletxes ‘Step Into’ and ‘Step Over’ (la primera executa instrucció a instrucció entrant
a les subrutines, la segona no entra a les subrutines sino que les executa directament i torna al programa principal).

 22

Finalment, podem veure que la finestra de la dreta, a dalt, es pot veure el contingut de les variables. Podem parar la
depuració prement el quadrat vermell.

Torneu a carregar el programar, tanqueu l’Eclipse i torneu-lo a obrir, familiaritzeu-vos amb l’entorn. Feu alguna
modificació simple del programa, torneu a compilar i depurar, etc.

Amb aquest apartat hem assolit coneixements bàsics d’una eina genèrica, l’Eclipse, per tal de treballar amb sistemes
embedded.

NOTA: De vegades conforme anem treballant, hi ha algun error a l’OpenOCD. Convé anar revisant la finestra DOS a
on l’executem per verificar que no hi ha cap problema. En qualsevol cas, feu això quan l’Eclipse doni errors al
comunicar-se amb la placa.

 23

4. Control dels displays de set segments

Objetius concrets:

- Controlar els ports d’E/S del microcontrolador,
- Presentar un missatge pels displays de 7 segments de la placa.

A la placa LPCEB2000-I hi ha 8 displays de 7 segments i el punt. En principi per tal de controlar-los necessitaríem 8
línies per cada dígit, i per tant un total de 8x8=64 línies. Per tal de no utilitzar tants pins del microcontrolador, una de
les tècniques que es fa servir normalment és fer una visualització multiplexada en temps. En tot moment només tindrem
com a màxim un display encès, i aquest dígit anirà canviant ràpidament per donar-nos la impressió de que tots els dígits
estan encesos alhora.

És a dir, cada cert temps (T) canviarem el dígit que s’encén:

.

.

.

t = 0

t = T

t = 7T

t = 8T

Si fem que el temps T sigui prou curt ens semblarà que tots els dígits estan encesos alhora. Per poder fer això
necessitem 8 línies de control que ens permetin encendre els 7 segments més el punt d’un display, i 8 línies més
d’habilitació de cada display. Per tant hem reduït el nombre de línies necessàries de 64 a 16.

Podem reduir aquest nombre encara més utilitzant elements de memòria que emmagatzemin quins segments han
d’estar encesos en un moment donat i quin display ha d’estar activat. L’esquema seria semblant al de la següent figura:

a

f b
g

e c
d

e
d
dp
c
g
b
f
a

dp

LE

LE

8

8

 24

En aquest esquema fem servir dos elements de memòria, latch, amb dos senyals d’habilitació (LE). En total fem servir
només 10 senyals de control (els 8 per a cada latch més 2 d’habilitació). A la següent figura podem veure quines són les
connexions dels displays que hi ha a la placa LPCEB2000-I.

Fig 1: Esquema de connexió dels displays de 7-segments.

El primer component (74LV244) és un buffer. Per tenir-lo activat haurem de deixar en alta impedància, o posar a ‘1’, el
bit P0.29. Els dos components següents (74HC373) són dos latches. Aquests components passen el valor Dn a Qn
només quan LE=1. Si LE=0, els senyals Qn mantenen el seu valor.

NOTA: Per encendre uns sements a un dígit cal posar a ‘0’ el senyal d’habilitació del dígit (hit1, hit2, hit3 o hit4)
i posar uns a les entrades (a,b,c,d,e,f,g o dp) corresponents dels segments.

Pins de ports d’E/S involucrats (Port 0):

P0.10 – P0.17, P0.18, P0.19 i P0.29.

Per configurar aquests pins com a sortides hem de programar adequadament els registres següents (Capítol 9 del
Manual d’usuari del LPC2292: GPIO):

 25

*PINSEL0 (configurar com a GPIO els pins P0.10-P0.15)

*PINSEL1 (configurar com a GPIO els pins P0.16-P0.19 i el P0.29)

 26

*IODIR (configurar els pins P0.10-P0.19 i P0.29 com a sortides).

Per exemple, la següent rutina configura els Pins P0.10:P0.19 i el Pin P0.29 com a sortides:

void initdisplay(void)
{
 *PINSEL0&=0x000FFFFF; // Pins P0.10-15 son GPIO
 *PINSEL1&=0xF3FFFFFF; // Pin P0.29 es GPIO
 *IODIR0|=P10+P11+P12+P13+P14+P15+P16+P17+P18+P19+P29; // Pins P0.10:19 i P0.29 son sortides

 *IOCLR0|=P29; // Posem a ‘0’ bit P0.29.
}

Les etiquetes de registres (PINSEL0, PINSEL1, IODIR0, etc.) estan definides al fitxer LPC_Base.h. Les definicions de
P10, P11, etc., (o B10, B11, etc.) es troben a LPC_SysControl.h. Aquestes etiquetes són molt útils perquè ens permeten
posar a 0 bits d’un registre d’una manera molt simple:

Per exemple, si volem posar a 0 els bits 7, 16, 21 i 28 d’un registre (apuntat per ‘reg’) podem fer:

*reg &=~(B7+B16+B21+B28);

Si volem posar a ‘1’ els bits 4, 13, i 19, podríem fer (es pot fer també amb Pn):

*reg |=B4+B13+B19;

Finalment, cal notar com funcionen els registres *IOCLR0, *IOSET0 i *IOPIN0.

 27

Quan escrivim una dada de 21 bits a *IOCLR0 o *IOSET0, només canviem els bits, configurats com a sortides GPIO
amb *PINSEL0 o *PINSEL1, en els que escrivim uns. Es a dir, si tot el port 0 està configurat com a sortida i fem:

*IOCLR0=P1+P7;
*IOSET0=P8+P15;

Estem posant, amb la primera instrucció, els bits P0.1 i P0.7 a ‘0’, i amb la segona, els bits P0.8 o P0.15 a ‘1’. La resta
continua amb els valor que tenien. Per llegir quins valors tenen els bits, ja estiguin configurats com a sortides o entrades
llegirem el registre *IOPIN0:

variable=*IOPIN0;.

L.1.1 Feu un programa que escrigui un missatge als displays.

Caldrà fer una rutina que configuri adequadament els pins P0.10:P0.19 i P0.29 com a sortides, i multiplexi la
visualització dels caràcters als displays. Els retards (T) els podeu fer amb bucles d’espera:

int i;
float a;

for (i=0, a=0.0;i<10000;i++) a++; // Generem un retard

Més endavant farem servir funcions molt més adequades que faran ús dels temporitzadors.

 28

5. Timer0 i Timer1 + Vectored Interrupt Controller

Objetius concrets:

- Entendre el funcionament de les interrupcions vectoritzades als µC LPC2XXX,
- Entendre el funcionament dels temporitzadors,
- Programar els Timers per a generar interrupcions a una determinada freqüència.

Els temporitzadors del LPC2292 segueixen l’estructura habitual que podem trobar a la majoria de microcontroladors.
Bàsicament són uns comptadors que es van incrementant periòdicament fins que arriben a un valor que el programador
ha decidit. Quan el comptador arriba a aquest valor passa a ‘0’ i es pot generar una interrupció.

Per tenir més flexibilitat a l’hora de programar els períodes d’interrupció normalment s’afegeix un comptador de
prescalat, el qual quan arriba a un determinat valor és el que fa que el comptador anterior s’incrementi en una unitat.

Es a dir, suposem que el comptador de prescalat està programat per incrementar el comptador principal quan arriba a 2,
i el comptador principal està programat per passar a 0 un cop arriba a 6. Veuríem la següent evolució:

Cada cop que el comptador de prescalat arriba a 2 (el límit que s’ha programat en aquest cas) augmentem el comptador
del timer. Un cop el comptador arriba a 6, es demana interrupció i el comptador passa a 0 (quan així ho indica el
comptador de prescalat). El rellotge pclk (peripheral clock) és de 10MHz, per defecte.

Els registres per configurar el timer0 d’aquesta manera són (Capítol 15 del Manual d’usuari del LPC2292):

*TIMER0_TCR: Timer0 Control Register

*TIMER0_PR: Timer0 Prescaler Register

 29

*TIMER0_MR0: Timer0 Match Register

*TIMER0_MCR: Timer 0 Match Control Register

A continuació teniu un exemple de configuració del Timer0 per interrompre a una certa freqüència.

void initimer0(void)
{
 *TIMER0_TCR = 1; // Timer Enable
 *TIMER0_PR = 0x02F; // Valor pel registre de prescalat
 *TIMER0_MR0 = 0xF0; // Valor del reg. de match0 per fer reset comptador
 *TIMER0_MCR = B0+B1; // Interrupcio i reset quan MR0
}

Aquest exemple no és complert perquè tot i que configurem el timer0 per generar interrupcions no les activem ni
indiquem quina serà la rutina de servei d’interrupció. Això ho veurem a la següent secció.

NOTA: El Timer compta una unitat amb el rellotge pclk (peripheral clock), que per defecte és de 10MHz. Les
definicions de Bn, es troben a LPC_SysControl.h, del projecte test: Bn=2n.

 30

VIC: Vectored Interrupt Controller del LPC2292

El microcontrolador LPC2292 té 3 maneres diferents de respondre a interrupcions (Capítol 6 del Manual d’usuari del
LPC2292):

a) Interrupcions ràpides: Fast Interrupt reQuest (FIQ)
b) Interrupcions vectoritzades: Vectored IRQ (16 canals com a màxim)
c) Interrupcions no vectoritzades: Non-vectored IRQ.

Les interrupcions que farem servir són les IRQ vectoritzades. Hi ha 28 fonts d’interrupció degudes a perifèrics interns o
interrupcions externes:

Fig 2: Fonts d’interrupció al LPC2292.

Com podem veure la interrupció generada pel Timer0 és la 4. Volem que sigui vectoritzada, i això ho indiquem amb el
registre *VICIntSelect:

i per tant haurem d’escriure un ‘0’ al bit 4 d’aquest registre. El LPC2292 té fins a 16 canals d’interrupció vectoritzada
(0-15). Podem configurar un canal qualsevol (per example el 0) per controlar les interrupcions del Timer0. Cada canal

 31

té associat un registre de control. Si volem que el canal 0 controli les interrupcions del Timer0 hem de configurar el
registre *VICVectCntl0 adequadament:

Per exemple, per utilitzar el canal 0 per al Timer0 executarem:

 *VICVectCntl0 = B5 + 0x4; // Activem Canal 0 d’IRQ vectoritzada per la int. 4

El següent pas és donar l’adreça de la RSI al canal 0 del VIC (Vectored Interrupt Controller):

 *VICVectAddr0 = (int)TIMER0_VectISR;

on estem dient que la rutina TIMER0_VectISR serà la RSI que atendrà la interrupció del Canal 0 que hem associat al
Timer0. Les rutines de servei d’interrupció es caracteritzen perquè han de salvar tots els registres al començar i
recuperar-los al finalitzar. D’aquesta manera el programa principal que ha estat interromput no es veu afectat per
l’execució de la RSI. Veurem amb més detall en el següent punt com es fa això al nostre sistema.

Finalment cal activar les interrupcions del Timer0, amb el registre *VICIntEnable:

 *VICIntEnable |= B4; // Habilitem les interrupcions del Timer (font 4).

Tot i que no ho farem servir explícitament ara, per deshabilitar interrupcions podríem fer servir el següent registre:

 32

Què hem fet fins ara ?

a) Hem activat el Timer0, li hem donat un valor al registre de prescalat i al registre de ‘match’ per
tal de produir una interrupció un cop el Timer0 arribi a aquest valor. Això ho hem fet donant
valors adequats als registres:

 TIMER0_TCR: Habilitem el Timer0
 TIMER0_PR: Donem valor al registre de prescalat
 TIMER0_MR0: Valor del registre de Match 0 (MR0)
 TIMER0_MCR: Fem que demani int. (4), quan el comptador

arribi a MR0, i es posi a 0.

b) Un cop fet això, no es produirà cap interrupció. Això és degut a que no hem configurat el

Controlador d’Interrupcions Vectoritzades (VIC) del LPC2292. És a dir, el perifèric pot generar
la petició d’interrupció però ningú no en farà cas.

Per tal que el VIC tingui en compte les peticions d’interrupcions, hem configurat un canal dels 16
que té el VIC, per tal que dugui a terme la interrupció demanada pel Timer0. Hem triat el canal 0.
Això ho hem fet configurant els registres:

 VICIntSelect: Seleccionem int. 4 com a vectoritzada
 VICVectCntl0: Activem canal 0 VIC per a la int. 4
 VICVectAddr0: Donem adreça RSI de canal 0 de VIC
 VICIntEnable: Activem interrupcions 4 (del Timer0)

I, ara, què ens queda per fer ?

a) Totes les Rutines de Servei d’Interrupció han de salvar els registres a la pila i recuperar-los en acabar. En el nostre
cas, ho hem de fer en assemblador.

b) Escriure la RSI.

Ho veurem a continuació...

 33

Rutines de Servei d’Interrupció al LPC2292

Una rutina de servei d’interrupció ha de salvar els registres del microprocessador al començar i ha de recuperar-los al
finalitzar. En el nostre entorn de programació ho hem de fer en ensamblador, i per això farem servir una Macro que està
definida al fitxer Interrupt.s del nostre projecte:

.macro IRQHandle in_handle,out_handle
 .extern \in_handle
 .global \out_handle
\out_handle:
 stmdb sp!, {r0-r11, ip, lr} # Guardar registres a la pila
 ldr r0, =\in_handle
 mov lr, pc
 bx r0 # Saltem a RSI de l’usuari
 ldmia sp!, {r0-r11, ip, lr} # Recuperem registres de la pila
 subs pc, r14, #4
.endm

Aquesta macro té dos paràmetres d’entrada: in_handle i out_handle. La crida a la macro es fa de la següent
manera dins el fitxer Interrupt.s:

 IRQHandle TIMER0_ISR,TIMER0_VectISR

El fet que això sigui una macro vol dir que la sentència anterior és idèntica a haver escrit:

 .extern TIMER0_ISR
 .global TIMER0_VectISR
TIMER0_VectISR:
 stmdb sp!, {r0-r11, ip, lr} # Guardar registres a la pila
 ldr r0, TIMER0_ISR
 mov lr, pc
 bx r0 # Saltem a RSI de l’usuari
 ldmia sp!, {r0-r11, ip, lr} # Recuperem registres de la pila
 subs pc, r14, #4 # Tornem a programa principal

on TIMER0_VectISR és definida com una etiqueta global (pot ser referenciada a un altre fitxer del projecte) i l’etiqueta
TIMER0_ISR es suposa que és externa (està definida a un altre fitxer del projecte). L’etiqueta TIMER0_VectISR serà
l’adreça que passarem al Controlador d’interrupcions, i TIMER0_ISR serà la nostra rutina de servei d’interrupcions, la
de l’usuari.

Per tant al nostre fitxer C podem executar l’ordre que hem vist abans (*VICVectAddr0 = (int)TIMER0_VectISR;), a
on diem al controlador que l’adreça de la RSI que respondrà al canal 0.

 34

La rutina de servei d’interrupció pròpiament dita pot incrementar una variable (tics) per generar retards.
En qualsevol cas cal, just abans de sortir de la RSI, desactivar la petició d’interrupció del Timer0. Si no ho féssim, en
sortir, continuaríem tenint pendent la petició d’interrupció que va generar l’execució de la RSI. Això seria un problema,
perquè executaríem la RSI més d’un cop. Per desactivar la interrupció disposem del registre TIMER0_IR

i cal dir-li al controlador d’interrupcions vectoritzades que s’ha acabar la RSI. Això fem escrivint un zero al registre
VICVectAddr. Això és el típic EOI (End of Interrupt) del VIC. Com es pot llegir al ‘VIC usage notes’ (p. 101):

Aquesta pot ser la RSI del Timer0:

void TIMER0_ISR(void)
{
 tics++;

 *TIMER0_IR |= 0x1; //anulem peticio int.
 *VICVectAddr = 0x00; //EOI del VIC
 //(end of int.)
}

Ara ja estem en condicions de fer un exemple complert amb el Timer0:

 35

Exemple control Timer0

extern void TIMER0_VectISR(void);

unsigned int tics=0;

void retard(int n)
{
 tics=0;
 while (tics<n);
}
void TIMER0_ISR(void)
{
 tics++;

 *TIMER0_IR |= 0x1; //anulem peticio int.
 *VICVectAddr = 0x00; //EOI del VIC
 //(end of int.)
}
void initimer0(void)
{
 *TIMER0_TCR = 1; // Timer0 ON
 *TIMER0_PR = 0x02F; // Prescaler
 *TIMER0_MR0 = 0xF0; // Match0
 *TIMER0_MCR = B0 + B1;

 *VICIntSelect&=~B4; // Timer0 Int. es IRQ
 *VICVectAddr0 = (int)TIMER0_VectISR;
 *VICVectCntl0 = B5 + 0x4;
 *VICIntEnable|=B4;
}

Al fitxer Interrupt.s posarem:

.macro IRQHandle in_handle,out_handle
 .extern \in_handle
 .global \out_handle
\out_handle:
 stmdb sp!, {r0-r11, ip, lr}
 ldr r0, =\in_handle
 mov lr, pc
 bx r0
 ldmia sp!, {r0-r11, ip, lr}
 subs pc, r14, #4
.endm

 IRQHandle TIMER0_ISR,TIMER0_VectISR

Estudi previ:

EP2.1: El rellotge que governa les transicions del registre de prescalat dels timers és el ‘pclk’ (periphery clock). Aquest
rellotge està programat per defecte a 10 MHz. Tenint en compte això, quina és la freqüència d’interrupció del Timer0,
quin temps triga a executar-se la crida ‘retard(20)’ ?

Treball de laboratori:

L2.1 Amplieu el programa del projecte test per configurar una
Interrupció del Timer1 a 100Hz.

L2.2: Canvieu el codi de la secció anterior, L1.1, que controlava el display,

per tal que el display sigui multiplexat des de la RSI del Timer0.

 36

6. Cicles de bus externs al LPC2292

Objetius concrets:

- Observar a l’analitzador lògic les formes d’ona dels cicles de bus a memòria externa del LPC2292.
- Programar diversos cicles d’espera i observar els resultats a l’analitzador lògic.

El LPC2292 a l’igual que mols altres microcontroladors moderns disposa de memòria Flash i RAM internes, però
també té un controlador de memòria externa (EMC, Capítol 3 del Manual d’usuari del LPC2292). Aquest controlador
permet configurar fins a 4 bancs de memòria independents, cadascun de fins a 16Mbytes. El mapa de memòria general
del microcontrolador és el següent:

Com podem veure hi ha 1.5Gbytes reservats per a memòria externa. Tot i així només es fan servir 4x16Mbytes amb el
controlador de memòria externa:

Els senyals de l’interface són:

 37

El LPC2292 disposa de 4 senyals de chip select (CS[3:0]) que es poden connectar directament als xips de memòria
RAM/ROM. A més, cada CS[3:0] es correspon a un únic banc de memòria dels que sortien a la taula anterior (Table 5).
Són controlats amb els següents registres:

Cada registre BCFGn té el següent format:

Els bits que ens interessen són els RBLE, IDCY, WST1 i WST2:

 38

- RBLE: Veient les connexions a la RAM i el datasheet de la RAM, aquest bit ha de ser igual a ‘1’. Per què?
- Els bits IDCY (idle cycles) permeten especificar el nombre mínim de cicles de rellotge entre accessos de

bus consecutius al mateix banc o a altres. Per evitar el problema de ‘bus contention’, col·lisió al bus de
dades entre cicles de bus consecutius, s’ha d’especificar el nombre mínim de cicles de rellotge per tal que
el problema no es doni.

- Els bits WST1 i WST2 permeten especificar els cicles d’espera en lectura i escriptura respectivament.

A la placa LPCEB2000-B hi ha un xip de memòria flash i un altre de RAM. Les connexions al xip de RAM es poden
veure a la següent figura:

Com podem veure és un xip de 512Kbytes de capacitat total, en el format 256Kx16. Els pins de la placa LPCEB2000-B
són totalment accessibles i són els següents:

 39

Els exemples típics de cicle de bus que ens dóna el fabricant del LPC2292 són els següents (cal tenir en compte que el
comportament de BLS0* i BLS1* en lectura pot ser diferent del que surt als cronogrames, depenent del bit RBLE del
registre BCFG1):

La informació més detallada dels temps del microcontrolador es pot trobar al datasheet del LPC2292:

Cicle de lectura

 40

Cicle d’escriptura

 41

Rellotge del sistema (OPCIONAL)

El LPC2292 disposa d’un rellotge programable, cclk, que es pot generar a partir del cristall de quars extern, multiplicant
la seva freqüència per un número fins un màxim de 60MHz. La freqüència del cristall de quars a la placa és de 10MHz.

Fins ara no hem tocat cclk, que era de 50MHz. Els perifèrics interns (timers, etc.) funcionen amb un altre rellotge, el
pclk: peripheral clk, que fins ara també tenia la mateixa freqüència (50MHz).

El LPC2292 ens ofereix la possibilitat de veure el rellotge intern del microprocessador pel pin A23 (el pin 23
d’adreces) que es troba al Port 3: P3.23. Aquest pin pot ser bit extern d’adreces o treure un rellotge XCLK, que s’obté a
partir del rellotge pclk.

La següent rutina, la podeu afegir al vostre programa per fixar que el rellotge XCLK, que es veu pel pin A23, sigui el
rellotge del microprocessador, CCLK, i el rellotge dels perifèrics, PCLK, igual a 50 MHz.

void initPLL(void)
{
 // A aquesta rutina fixem que el cclk (processor clock) = 50MHz
 // i que el pclk (peripheral clock) sigui 50MHz
 // i que per A23 surti XCLK=CCLK=PCLK

 unsigned int M=5; // M>=1 i P>=2 necessariament
 unsigned int P=2;

 *PLLCON=0x3;
 *PLLCFG=((P-1)<<5)+(M-1); // Fixem que cclk = 10MHz * M < 60MHz

// 156MHz<fcco=10MHz*2*M*P<320MHz

 *PLLFEED=0xaa; // Activem PLL
 *PLLFEED=0x55;

 *VPBDIV=P4+0x01; // xclk = pclk = cclk
 *PINSEL2&=~P25;*PINSEL2|=P13; // Fem que el pin P3.23 no sigui A23 sino XCLK (p. 120)

}

Així és molt senzill canviar la freqüència del microprocessador (canviant els valors de P i M, respectant els límits que
podeu veure als comentaris de la rutina). Podeu mirar tots els detalls dels diferents rellotges del sistema al Capítol 4
(PLL) del Manual d’usuari del LPC2292 (p. 72-77).

NOTA: El Manual d’usuari del LPC2292 és una mica confús respecte als valors que cal posar de M i P al registre
PLLCFG. Pareu atenció dels comentaris que hi ha a la pàgina 77 del manual. És per aquesta raó que es posa P-1 i M-1
al registre PLLCFG.

Els valors de P i M de la rutina anterior es poden canviar, però cal ser curós perquè fàcilment ens equivocarem. Podeu
posar una freqüència, p.e., de 30MHz o 40MHz.

 42

Estudi Previ

EP7.1 A partir de la informació del datasheet de la memòria RAM IS61LV25616-10 (IS61LV25616.pdf) i
la informació del LPC2292, calculeu el nombre mínim d’estats d’espera en lectura. Freq. de treball del
LPC2292: 50MHz. Nombre de zones imatge del xip de memòria RAM al mapa de memòria ?

EP7.2 A partir de la informació del mateix datasheet i del LPC2292 calculeu el nombre mínim amb que cal
configurar els cicles d’espera en escriptura.

EP7.3 A partir de la informació d’aquest apartat i la del fitxer olimex_lpce2294.ram del projecte, a on es
carrega el nostre programa quan l’executem amb l’Eclipse ?

EP7.3 (OPCIONAL) Calculeu el nombre mínim d’estats IDCY (cicles de rellotge entre cicles de bus per
evitar el problema de ‘bus contention’).

Treball a realitzar al laboratori

L7.1- Connectarem a l’analitzador lògic els següents senyals:

- A23 (pin pel que es veu XCLK) (OPCIONAL)
- A1:3
- CS1
- BLS0:1
- OE
- WE
- D11:15 (o altres bits de bus de dades)
- P0.18 o P0.19 (relacionat amb l’actualització dels displays de 7 segments)

L7.2- Quan depurem a les pràctiques, i llevat de que canviem els fitxers de configuració, el programa es carrega a la
RAM externa, i les seves dades també s’emmagatzemen al mateix xip. Tenint en compte això:

2.1 A partir de mesures, doneu la màxima informació possible dels temps d’accés en lectura REALS del xip
de memòria RAM.

2.2 Compareu aquests resultats amb la informació del corresponent datasheet: IS61LV25616.pdf

2.3 Captureu cicles burst. Quina diferència hi ha entre cicles burst en lectura i escriptura ? Per què ?

2.4 Verifiqueu la freqüència d’interrupció del Timer que controla els displays de 7 segments, mirant al pin

P0.19 (o el P0.18).

L7.3- Examineu l’efecte de programar diversos cicles d’espera en lectura (WST1) i escriptura (WST2), així com
diferents valors de cicles de rellotge IDCY.

L7.4- (OPCIONAL junt amb EP7.4) Programeu diferents freqüències de rellotge del microcontrolador (modificant
la configuració del PLL). Observeu els resultats a l’analitzador lògic.

NOTA: Documenteu els resultats amb captures de la pantalla de l’analitzador lògic.

 43

APARTATS OPCIONALS

 44

7. Teclat (OPCIONAL)

Objectius concrets: controlar el teclat.

A la següent figura podem veure l’esquema de connexió del teclat a la placa LPCEB2000-I:

Suposem que els pins P1.20- P1.23 els hem configurat com a GPIO-sortides, els pins P1.16-P1.19 son GPIO-entrades, i
apliquem els valors P1.20=’0’, P1.21=P12.2=P1.23=’1’. En cas de pitjar una de les tecles a la primera fila (la indexada
per P1.20) veurem un ‘0’ al corresponent pin P1.16-P1.19.

Si en comptes d’això últim, activem el pin P1.21 (és a dir, P1.20=P1.22=P1.23=1 i P1.21=0) podrem veure si tenim
alguna tecla pitjada a la segona fila (KEY5-KEY8), i així successivament. Normalment el que es fa és escombrar
contínuament els pins P120-P123, activant en tot moment com a màxim un d’aquests, i mirar als pins P1.16:P1.19 les
tecles que s’han pitjat.

Aquesta estratègia consumeix recursos de computació de manera continuada perquè cal examinar el teclat
periòdicament, independentment de que alguna tecla estigui pitjada o no. Per evitar aquest problema podem fer servir
interrupcions. Aprofitarem el següent circuit que es troba a la placa LPCEB2000-I:

Com podem veure, si hi ha un ‘0’ a qualsevol dels pins P1.16-P1.19 el resultat és un ‘0’ al pin P0.30. Noteu que els
primers quatre pins són al Port 1 i el pin P0.30 és del Port 0. El pin P0.30 es pot configurar per generar interrupcions
externes (EINT3).

Per tant, es poden proposar dues estratègies diferents de control del teclat:

1- Escombrat periòdic continu dels pins P1.20-P1.23, llegint els pins P1.16-P1.19. La periodicitat pot venir
marcada pels Timers (Timer0 o Timer1).

 45

2- Posar a ‘0’ els pins P1.20-P1.23 i activar interrupcions externes (EINT3) del P0.30. En cas de produir-se
una interrupció fer un escombrat complet, a la mateixa RSI, i mirar quina(es) tecla(es) s’han pitjat.

Per simplificar la RSI es pot fer que el pin P0.30 interrompi per flanc de baixada. Un cop estiguem a la
RSI canviem a interrupció per flanc de pujada, i així alternadament cada cop que entrem a la RSI. Això
implica que si premem una tecla hi haurà dues interrupcions (una quan comencem a prémer la tecla i una
altra quan deixem de fer-ho).

EP3.1: Quins avantatges/desavantatges presenten comparativament ambdues estratègies ? (hi ha punts positius i
negatius per a totes dues). Podeu proposar una altra ?

La informació per programar les interrupcions externes es troba a: Capítol 4. System Control Block. External Interrupt
Inputs. El registre PINSEL2 té la següent forma:

 46

Només ens queden els registres EXTMODE i EXTPOLAR, per configurar els pins EINT0:3 per generar interrupcions
per flancs o nivell (EXTMODE), o per flanc de pujada o baixada (EXTPOLAR).

 47

Finalment, només ens queda el registre EXTINT, que és a on podem mirar si hi ha alguna interrupció pendent externa
(EINT0:3). També a la RSI, s’ha de posar a ‘1’ el bit que correspongui a la interrupció per tal d’anular la petició prèvia
que ha generat que s’executi la RSI.

A la RSI que farem per a EINT3, tenint en compte que la programem per flancs, posarem a ‘1’ el bit 3 de EXTINT,
abans de sortir de la rutina.

 48

Exemple detecció tecla pitjada per interrupcions

Aquestes rutines configuren el teclat per tal que es generi una interrupció externa cada cop que es prem una tecla, o es
deixa de prèmer. A tal efecte, programem a initeclat() el pin P0.30 per generar interrupcions per flanc de baixada. Un
cop a dins la RSI, canviem sempre la polaritat de la interrupció (a flanc de baixada o pujada segons convingui).

extern void SPI0_VectISR(void);

unsigned int polar=0;

void P030_EINT3_ISR(void)
{
*VICIntEnClr|=B17; // Deshabilitem EINT3

 if (!polar)
*EXTPOLAR=polar=B3;

else *EXTPOLAR=polar=0; // Canviem polaritat EINT3

 *EXTINT|=P3; // Anulem qualsevol int. pendent
 *VICVectAddr = 0x00; // End of Interrupt cap el VIC
*VICIntEnable|=B17; // Tornem a habilitar EINT3

}
void initeclat(void)
{

 *PINSEL2&=~(P3); // Pins P1.25:16 son GPIO
 *IODIR1=P20+P21+P22+P23; // Pins P1.20:23 son sortides.

// La resta entrades (dins de P1.16:25)

 *IOCLR1=P20+P21+P22+P23; // Posem a 0 els bits P1.20-P1.23

 *PINSEL1&=~B28; // Pin P0.30 es EINT3
 *PINSEL1|=B29;
 *EXTMODE=B3; // EINT3 es edge sensitive.
 *EXTPOLAR=0; // EINT3 es falling-edge

*EXTINT|=P3; // Anulem qualsevol int. pendent

 *VICIntSelect&=~B17; // EINT3 es IRQ (i no FIQ)
 *VICVectAddr2 = (int)EINT3_VectISR;
 *VICVectCntl2 = B5 + 17; // Fem servir VIC Channel 2
 *VICIntEnable|=B17;
}

afegint a Interrupt.s:

 IRQHandle P030_EINT3_ISR,EINT3_VectISR

Treball de laboratori:

L3.1 Trieu una de les estratègies per a controlar el teclat que hem explicat.
Feu el codi corresponent.

L3.2 Modifiqueu el vostre programa per tal que si es prem una tecla determinada surti

un missatge diferent al display.

 49

8. Altaveu (OPCIONAL)

A la següent figura podem veure les connexions de l’altaveu que hi ha a la placa LPCEB2000-I.

Com podem observar l’altaveu està controlat pel pin P0.25 el qual està connectat a l’entrada d’un petit amplificador
d’àudio. Per tant, podem generar ones quadrades a aquest pin i sentirem el to corresponent a l’altaveu.

L4.1 Modifiqueu el vostre programa per tal que, en prémer una tecla determinada,
es senti un to a l’altaveu. Podeu utilitzar la RSI del Timer1
(es pot fer una ‘sirena’ canviant la freqüència d’interrupció

del timer a dins la seva RSI). També podeu cercar a Internet com
fer una escala cromàtica (do, re, mi, etc.). Eventualment, podeu fixar la

durada de les notes amb el valor d’un dels potenciòmetres, si feu el següent apartat.

 50

9. Convertidors A/D (OPCIONAL)

Objetius concrets: controlar per interrupcions els convertidors A/D.

El LPC2292 disposa de un convertidor A/D de 10 bits que permet multiplexar fins a 8 pins. Podem fer una conversió
A/D d’un qualsevol d’aquests pins en un moment donat. A la placa LPCEB2000-I s’han col·locat 2 potenciòmetres de
la següent manera:

Els pins P0.27 i P0.28 poden ser configurats com a entrades analògiques AIN0 i AIN1, respectivament (amb en registre
*PINSEL1). El convertidor té dos registres de control (Capítol 17 del Manual d’usuari del LPC2292): *ADCR (A/D
Control Register) i *ADDR (A/D Data Register). Farem servir el hardware scan mode.

L’objectiu que tenim és convertir de manera continuada les dues tensions proporcionades pels potenciòmetres. Per tal
de no estar convertint en tot moment les tensions analògiques, el que farem és utilitzar el Timer0 i el seu registre Match
Register 1 per disparar les conversions. Això es pot fer automàticament configurant el mode START=100.

 51

Consulteu els detalls al Manual d’usuari del LPC2292

El funcionament que volem és:

Cada cop que el comptador del Timer0 arribi a un cert valor que definirem al registre TIMER0_MR1
(que haurà de ser més petit que el valor definit al registre TIMER0_MR0), començarà una conversió del
pin P0.27 o P0.28. Les conversions aniran alternant-se i al final de cadascuna es generarà una interrupció.

EP5.1: Per què ha de ser més petit el valor que posem a TIMER0_MR1 que el de TIMER0_MR0 ? Cal tenir en compte
el programa que hem fet a la secció 2.

El registre de dades, *ADDR, té el format següent:

Els bits importants d’aquest registre són els CHN, que indiquen quin canal ha estat convertit, i el 15:6 V/VddA que ens
donen la conversió digital de la tensió. Aquest registre el llegirem a la RSI del convertidor.

NOTES:

- El rellotge del convertidor s’obté dividint la freqüència de PCLK (15 MHz) per CLKDIV+1 (registre
*ADCR). Aquesta freqüència sempre ha de ser menor que 4.5 MHz.

- NO seleccioneu el mode BURST, perquè està relacionat amb un dels ‘bugs’ del LPC2292 i dóna
problemes.

- Feu START=100 i no oblideu fer el EOI del VIC (escriure 0 a VICVectAddr), a la RSI, al final.

Treball al laboratori:

L5.1 Modifiqueu el vostre programa per tal que hi hagi conversions periòdiques
dels pins P0.27 i P0.28. Caldrà modificar la rutina initimer0, per incoporar

el registre de Match 1: TIMER0_MR1.

La visualització del valor convertit la farem a la següent secció. En cas de no fer el següent apartat representeu les
conversions A/D en hexadecimal als displays.

 52

10. Bus SPI: Serial Peripheral Interface (OPCIONAL)

Objetius concrets:

- Conèixer el bus SPI
- Programar-lo per interrupcions per a transmetre dades de manera contínua als leds.

El LPC2292 disposa de dos controladors independents de bus SPI. Aquest bus està dissenyat per enviar i rebre dades de
perifèrics en format sèrie síncron. A cada bus hi ha un Master i un o més Slaves. El bus està format per 4 senyals:

- SCK: Serial clock
- SSEL: Selecció de Esclau. Es una entrada dels esclaus que el Master utilitza per dir amb quin esclau vol

establir comunicació
- MISO: Master In Slave Out: senyal unidireccional sèrie pel que l’esclau transmet la informació al Master
- MOSI: Master Out Slave In: senyal unidireccional sèrie pel que el Master envia informació a l’esclau.

Les connexions a la placa LPCEB2000-I relacionades amb el bus SPI es poden veure a la següent figura:

En el nostre cas, l’esclau és un simple registre de desplaçament que té les sortides connectades a leds. L’esquema intern
del 74HC595 es pot veure a la següent figura:

Aquest component:

- A cada flanc de pujada del clock sèrie (SRCLK o SHIFT CLOCK) desplaça els bits del registre de
desplaçament (shift register), i el valor a l’entrada (SER o SERIAL DATA INPUT) és introduit al
registre.

- Quan hi ha un flanc de pujada al LATCH CLOCK (o RCLK) el contingut del registre de desplaçament
passa al LATCH, i per tant té efectes sobre els leds.

El controlador SPI0 del LPC2292 es controla mitjançant els següents registres: SPI0_SPCR i SPI0_SPCCR.

 53

NOTA: l’etiqueta definida a LPC_Base.h és SPI0_SPCR.

La relació entre el rellotge i la línia de dades és la següent:

Un resum es pot veure a la següent taula:

NOTA: Al nostre registre de desplaçament reb dades per flanc de pujada del rellotge sèrie. Per tant ens interessen les

combinacions CPOL=CPHA=0 ó CPOL=CPHA=1.

 54

NOTA: l’etiqueta definida a LPC_Base.h és SPI0_SPCCR.

NOTA: l’etiqueta definida a LPC_Base.h és SPI0_SPDR. Aquest registre només el farem servir per escriure la dada

que volem enviar. El nostre registre de desplaçament esclau no enviarà cap dada al LPC2292.
NOTES:

- El programa haurà de configurar adequadament els registres de control del SPI0: SPI0_SPCR i
SPI0_SPCCR.

- També haurà de configurar els pins P0.4, P0.5, P0.6 i P0.7 per a que siguin pins SPI (registre *PINSEL0).

- Cada cop que escrivim una dada al SPI0_SPDR, el registre de dades, es transmetrà una dada cap el

registre de desplaçament, però NO s’activarà el rellotge del Latch. Per tant no tindrà efecte la transferència
fins que activem, amb un flanc de pujada, el Latch. Això es farà amb el pin P0.20. Aquest pin haurà de ser
configurat com a GPIO-sortida.

- Finalment, doncs, quan haguem escrit una dada al registre de dades del SPI caldrà fer el flanc de pujada a

la línia P0.20. El problema és que això ho hem de fer un cop la transferència sèrie de la dada ha acabat.
Per això es proposa que configureu el SPI0 per que en acabar de fer una transferència es generi una
interrupció (que podeu dirigir a un canal del VIC que quedi lliure). A la RSI d’aquesta interrupció caldrà
fer el flanc de rellotge del pin P0.20 (connectat al latch del registre de desplaçament).

- A la RSI del SPI0 aprofitarem per donar la pròxima dada a transmetre. D’aquesta manera la transmissió

SPI és contínua.

- Les dades a transmetre seran el codi termòmetre de les conversions d’un dels potenciòmetres de la placa.

- A la RSI, al final, cal llegir el registre SPI0_SPSR i escriure un ‘1’ al bit ‘0’ del SPI0_SPINT (més el EOI
habitual del VIC, escriure al registre VICVectAddr).

L6.1 Modifiqueu el vostre programa per posar en codi termòmetre les conversions A/D
d’un dels potenciòmetres.

L6.2 Visualitzeu els senyals implicats a l’analitzador lògic
(l’esquema de connexions el trobareu a la següent secció)

