
Digital Systems - Laboratory Session P1

1

INTRODUCTION TO THE LABORATORY. DEVELOPMENT OF

APPLICATIONS WITH A WWW INTERFACE

1. Goals of the laboratory session

The basic goal of this laboratory session will consist in the development of an

application able to be managed through a WWW interface. The application will be

constructed as a program written in the C programming language. This application will

be later compiled for the SC12 device.

The first step before the development of the application will consist in getting used to

the SC12 device, as well as to its operating system. This will be accomplished with an

application already developed from which it will be possible to understand the way

dynamic WWW interfaces can be generated using C programs.

In the next section the most salient features of the SC12 device and its operating

environment will be introduced. Then the procedure to be followed in order to compile

an application developed in the C language and that permits to generate a WWW

interface will be reviewed. After indicating the steps to be followed in order to transfer

the resulting code to the WWW server the specifications corresponding to the

application to be developed will be explained.

The tools that will be used to develop the application are the following:

 AnyEdit: Language sensitive editor. This tool will be used to edit C programs

and to compile them so as to obtain executable code for the SC12 device.

 WinFTP: FTP client that will be used to transfer files to the SC12 device.

 WWW browser (Internet Explorer, Mozilla Firefox, …): This tool will be used

to evaluate the results produced by the developed application.

2. The SC12 device

The SC12 device belongs to the IPC@CHIP microcontroller family from Beck, a

“System on Chip” microprocessor family based on the x86 technology. This family

represents an efficient solution for the design of electronic systems requiring Ethernet

TPC/IP communications.

The SC12 device contains an internal microprocessor core from AMD compatible with

the 80186 microprocessor, and also 512 KB of SRAM and 512 KB of Flash memory.

The internal clock (no external oscillator is required) of the system has a frequency of

20 MHz.

The main hardware peripherals included in the chip are:

 16-bit 80186 CPU with 20 MHz clock frequency.

 512 KB of SRAM, 512 KB of Flash memory.

 14 programmable input/output pins.

Digital Systems - Laboratory Session P1

2

 2 full-duplex serial asynchronous ports.

 Ethernet IEEE 802.3 controller, 10Base-T.

 Integrated 10Base-T transceiver.

 Watchdog timer.

 PWM options.

 2 independent DMA channels.

 Interrupt controller with 6 external interrupt sources.

 3 16-bit programmable timers.

 Chip select logic.

Figure 1 represents the block diagram of the SC12 device.

Figure 1. Block diagram of the SC12 device.

Figure 2 represents the detailed configuration of the inputs and outputs of the device. As

it can be seen in this figure, the device has, among others, a data and address bus (AD

bus, pin 8 to 15), typical in the 80186, that permits to access external devices through

read and write processes. The waveforms corresponding to the read and write processes

on this bus are presented in figure 3.

In figure 3 the ALE (Address Latch Enable) signal is used to register externally the

address corresponding to the read or write process. The RD# signal (active low)

indicates that the access corresponds to a read process, while the WR# signal (active

low) indicates that the access corresponds to a write access. The PCSx# signals (where x

may have a value from 0 to 6 in the case of the SC12 device) defines that the read or

write address corresponds to a given group of devices.

Digital Systems - Laboratory Session P1

3

Figure 3. Pin configuration of the SC12 device.

Figure 3. Read and write processes on the AD bus of the SC12 device.

In order to perform read or write operations on the AD bus it is possible to use the

„inportb‟ or „outportb‟, respectively, from the C language. These instructions include the

specification of the address relative to PCSx in order to indicate to the external device

that a communication through the AD bus will be established.

For instance, let‟s consider that a given device is connected to the SC12 device using the

transceiver 74HC245, as depicted in figure 4.

Digital Systems - Laboratory Session P1

4

Figure 4. Use of the AD bus in the SC12 device.

To carry out the read and write processes on the external device using the transceiver

74HC245 the following C code can be used:

#include <dos.h>

void main(void)

{

 unsigned char read;

 unsigned char write= 0xFF;

 ActivatePCS0();

 read = inportb(0x0000); // read activating PCS0*

 outportb(0x0000, write); // write activating PCS0*

}

As it has been explained previously, another interesting feature of the device is the

availability of 14 programmable input/output lines. These lines, labelled as PIO0 to

PIO13 in figure 2, will be used to communicate the microcontroller with external

devices. As it will be explained later, the lines PIO0 and PIO1 will be used for the

application proposed in this practical session.

3. Introduction to the @Chip operating system

The SC12 device has a real-time operating system (RTOS) able to manage up to 35

tasks, 15 timers, 60 semaphores, etc. This operating system establishes the

communication between the hardware system and the software applications, and it

contains all the modules needed to handle the different functions available in the chip. It

is also possible to load or execute instructions or applications during the system

initialisation by properly configuring the „autoexec.bat‟ file. The RTOS is placed in the

Flash memory of the device. Its architecture is depicted in figure 5.

Digital Systems - Laboratory Session P1

5

Figure 5. Architecture of the operating system of the SC12 device.

As it can be observed in this figure, the operating system permits to access, configure

and use all the applications integrated in the device: FTP server, WEB server, telnet

server, command interpreter, file and input/output signal access, etc.

One of the most important parts in the operating system is the API (Application

Programmers Interface). As its name indicates, it constitutes the interface between the

operating system and the applications created by the user of the SC12 device. This

interface contains programs that can be used to configure the device applications

without a deep knowledge of the hardware of the system.

The operating system uses software interrupts to call the API‟s procedures. Two values

are required to call an interrupt: the interrupt number and the function number. The

interrupt number specifies the API and the function number indicates the procedure of

the API.

Some examples of interrupts and system functions are:

Interrupt Function Description

0xAB 0x01 Installs a function in the WEB server

0xA1 0x8D Specifies the logic levels for an I/O pin

0xA2 0x80 Enables the AD bus of the device

0xAC 0x09 Makes the system to enter in sleep mode for a given amount

of time

Digital Systems - Laboratory Session P1

6

If the SC12 device is programmed using the C language the following structures are

used in order to call the system software interrupts:

#include <dos.h>

int int86(int int_num, union REGS *in_regs, union REGS *out_regs);

int int86x(int int_num, union REGS *in_regs, union REGS *out_regs,

struct SREGS *sregs);

The function int86() executes software interrupts specified by int_num. The contents of

the union in_regs is first copied into the processor register and then the interrupt is

executed. The union out_regs contains the values of the CPU registers returned by the

interrupt. This permits to verify the correct execution of the function.

The unions REGS and struct SREGS are defined in the header file DOS.H

The function intx86() is equivalent to the previous one, but in this case it is possible to

specify values for the segment registers ES and DS of the processor using the values

contained in sregs.

An example of what has been explained previously will be explained thereafter. As it

was introduced previously the function 0x09 of the interrupt 0xAC makes the SC12 to

enter in sleep mode during an amount of time specified by the programmer. The

implementation of this function would be therefore as follows:

#include <dos.h>

union REGS inregs, outregs;

void main(void)

{

 inregs.h.ah = 0x09; // reg. AH contains the function to execute

 inregs.x.bx = 1000; // reg. BX contains the time in ms

 int86(0xAC, &inregs, &outregs); // interrupt is executed

}

In this way it is quite easy and intuitive to use and configure the devices integrated into

the SC12.

As it was explained previously the SC12 RTOS also includes the functionality required

to implement a web server. This means that HTML pages can be registered in the device

and they can be accessed using a web browser. The web server is started as soon as the

SC12 is connected to the network. Therefore, the user has just to specify the IP address

of the SC12 device in the browser in order to get connected to it.

Furthermore the web server includes a CGI (Common Gateway Interface) interface. By

using this interface it is possible to construct dynamic web pages.

If a web page is static this means that its content is predefined in an HTML file located

in a server. Using a CGI interface it is possible to modify the content of a page as

required by the user interaction. Additionally, the CGI interface is also able to work in

reverse mode. This means that a given web page may send information to the server that

Digital Systems - Laboratory Session P1

7

can be processed by an application. An example of this communication between a client

and a server is explained thereafter.

It is assumed that the IP address of the web server is 147.83.49.24. Furthermore, let‟s

assume that an application is executed that loads a web page when the following address

is entered in the browser: http://147.83.49.24/test. The method for the communication is

based on using in the web page a link as: http://147.83.49.24/test?value1. This method

is called „GET‟ and a server with a CGI interface is able to read „value1‟ and return a

new web page whose content depends on the value send after the character „?‟.

Additionally, if this web page is used in applications programmed in C, the application

may evaluate the parameter and use its value to carry out a given function within the

SC12 device, like setting a given I/O pin. Therefore, the use of the CGI interface permits

the SC12 device to establish an actual connection between the physical world and

internet.

4. Example of dynamic HTML programming

In the folder that will be indicated in the laboratory session the following files may be

found:

 cgi.h: Header file with the definitions required to manage the CGI interface of

the web server included in the operating system.

 hard.c: This file contains a set of basic functions that permit to manage several

features of the SC12 device (like the AD bus or the input/output lines).

 web.c: This file will contain the code required to generate dynamic HTML

pages.

 proc.c: This file will contain the program code that will be executed by the SC12

device.

These files have to be copied into an appropriate folder within the user area that will be

used to perform the laboratory session (Note: Due to limitations of the C compiler that

will be used it is important that the name of this folder is not longer than 8 characters,

and it should not contain the space character neither).

The first step to verify the correct functionality of the application consists in opening the

AnyEdit application (present in the user Windows desktop). Once the application is

opened the first thing to do is to create a new project. To do it first select the option File

-> New … in the main menu. A dialog window with several options will appear. In this

window the New Project option has to be chosen, and within it the Blank Project option

has to be selected. After that it will be necessary to specify the name and the location for

the project (options Project Name and Project Location in this dialog window). Once

these options are set it can be seen that on the left section of the user interface of the

tool, named Workspace, a new group with the name assigned to the project has been

created.

The next step will consist in adding to the project the files required to carry out the

application. Therefore, by clicking with the right mouse button on the last element in the

list (the element that has just been created) the option Add Files should be chosen. In

Digital Systems - Laboratory Session P1

8

the next dialog window it is necessary to select all the files that were indicated

previously.

After opening these files it is possible to observe that the Workspace section now

contains the files containing the application code. By clicking twice on a give file it is

possible to edit its contents in the right section of the user interface.

As it was previously explained the file cgi.h contains definitions required for managing

the CGI interface of the web server. This definition file is referenced in the file web.c

using the directive #include "cgi.h".

The file hard.c contains the definition of the functions that permit to handle specific

hardware resources (like the AD bus or the programmable input/output lines) of the

SC12 device. This file is referenced, using the directive #include "hard.c", in the file

proc.c. The functions defined in this file will be later used to carry out the application

proposed in section 5.

In order to understand the structure included in the file web.c it is necessary to know the

structure of the web pages to be developed in the device. The entrance page to the

device is called Index, so that in order to access this page it is necessary to enter in the

browser http://sdii0.upc.es/Index. This page just shows some basic information about

the laboratory and contains a link to the control page that is called Main. This page is

structured around two frames. The upper frame, called Banner, shows a simple figure,

while the bottom frame, called COM, will show the command that can be executed from

the application, as well as their results. The parameter that contains the value triggering

the type of action to be executed is called parameter_value, and is defined in the initial

section of the code.

These definitions can be seen in the first part of the code included in the file web.c:

#include <DOS.H>

#include <STDIO.H>

#include <STRING.H>

#include <STDLIB.H>

#include "cgi.h"

#define TCPIPVECT 0xAC

#define CGIVECT 0xAB

#define PFE_INT 0xA2

#define HAL_INT 0xA1

#define BIOS_INT 0xA0

#define I2C_INT 0xAA

int parameter_value = 0;

void ConfigWebServer(void);

/***/

/************** FEATURES OF THE WEB PAGE *************************/

/***/

char *NameBanner = "Banner";

char *NameFrame = "Main";

char *NameInitpage = "Index";

Digital Systems - Laboratory Session P1

9

char *NamePage = "COM";

Now it can be seen that the code corresponding to the different pages that have to be

generated have been included in the file web.c using several strings:

char *Frame = /* Main web page that contains the remaining ones */

"<HTML>"

 "<HEAD>"

 "<TITLE> DS. Laboratory </TITLE>"

 "</HEAD>"

 "<FRAMESET NORESIZE FRAMEBORDER=NO ROWS=24%,*>"

 "<FRAME SCROLLING=NO SRC=\"Banner\">"

 "<FRAME SCROLLING=NO SRC=\"COM\">"

 "</FRAMESET>"

 "</FRAMESET>";

/**/

char *Logo = /* Upper page. Contains just the logo */

"<HTML>"

 "<BODY bgcolor=\"#A0A0A0\">"

 "<TABLE border = 0 width = 100% >"

 "<TH align = center>"

 "</BODY>"

"</HTML>";

/**/

char *InitPage = /* Presentation page. Contains the link to the

main page */

"<HTML>"

 "<HEAD>"

 "<TITLE> DS. Laboratory </TITLE>"

 "</HEAD>"

 "<BODY bgcolor=\"#A0A0A0\">"

 "

"

 "<H2><P Align = center >Acquisition and control system via web

for a digital camera </P></H2>"

 "

"

 "<H1><P Align = center >

 ENTRAR </P></H1>"

 "
"

 "<TABLE>"

 "<TD>"

 "<I><H2>"

 "<P Align = left >Digital Systems. Laboratory</P>"

 "<H3>"

 "<PRE>"

 "<P Align = left >ETSETB</P>"

 "<TD width = 70% align = CENTER>"

 ""

 "</BODY>"

"</HTML>";

/***** Bottom left page. Contains the control menu *******/

char *MainPage = /* Initial menu */

 "<HTML>"

 "<BODY bgcolor=\"#A0A0A0\">"

 "<TABLE border = 1 cellspacing = 1 cellpadding = 1 width

=100%>"

http://sdii0.upc.es/Main/

Digital Systems - Laboratory Session P1

10

 "<TH align = center width = 20%>MENU"

 "<TH align = center width = 20%>State"

 "<TR>"

 "<TD align = center>"

 "
"

 "<H5>Activate LED<P></H5>"

 "<H5>Deactivate LED<P></H5>"

 "<H5><Ahref=\"COM?2>Periodic activation/deactivation

 <P></H5>"

 "<TD align = center>";

char *Ledon =

 "</P></H2>"

 "</TABLE>"

 "</BODY>"

 "</HTML>";

char *Ledoff =

 "</P></H2>"

 "</TABLE>"

 "</BODY>"

 "</HTML>";

char *Periodic =

 "<P>The LED is being activated/deactivated periodically

 </P>"

 "</TABLE>"

 "</BODY>"

 "</HTML>";

The control page is contained in the strings called “MainPage”, “Ledon”, “Ledoff” and

“Periodic”. This separation is due to the fact that, depending on the action to be taken

the state of the system should be modified, and so the visualisation of the state should

also be changed. In this way, as it will be explained later, the string corresponding to the

control page is generated by concatenating the string “MainPage” and one of the strings

“Ledon”, “Ledoff” or “Periodic”. This concatenation will be done depending on the

parameter returned by the links present in the page. As it can be noted in the previous

code, the value of the parameter returned by a given link is specified as <A

href=\"COM?1\"... Within this reference, “COM” is the name of the page, as it was

explained previously, while “?1” indicates that the value of the parameter that is

returned when the link is selected will be 1.

Once the code corresponding to the different pages that constitute the application has

been defined, three functions are defined in the file web.c: “FuncioInici”,

“FuncioFrame” and “FuncioLogo”. These functions install these pages inside the

system. As it can be noticed in the code, these functions just copy (strcpy() function) a

given string over the global string called “PaginaHTML”, and then they call the

functions required to initialise the pages.

The next function in the file web.c is called “FuncioCGI”. This function evaluates the

parameter that has been returned when a given link has been selected. As it can be seen

in the code, initially (i.e., before selecting any link) the page is generated by

concatenating the strings “MainPage” and “Ledoff”. When the user selects a specific

link the corresponding parameter value is determined and then the page to be shown will

be generated by concatenating the corresponding strings.

Digital Systems - Laboratory Session P1

11

The next function, called “Process_Func”, is in charge of determining if the pages have

been correctly installed in the server. This function must be always present in the code

to be developed.

Finally the function “ConfigWebServer” is in charge of configuring the web server

present in the device from the contents of the file web.c. This function must also be

always present in the code to be developed.

The file proc.c will contain for the moment just a call to the function

“ConfigWebServer”, so that the SC12 device will not make any action regardless of the

options selected by the user in the web pages.

The sequence of steps to be followed in order to compile the code and transfer it to the

SC12 device is the following:

1. In the editing area of the AnyEdit tool the file proc.c has to be selected.

2. Choose the option Tools -> Compilador C from the main menu (the same effect

can be obtained by clicking on the button labelled as in the action buttons

section of the tool). As it can be observed in the window called Output in the

bottom of the tool, this action calls the compiler that will translate the C code

into executable code for the SC12 device. If the compilation has completed

without errors a new file called proc.exe can be found in the folder were the code

files were placed. This file contains the binary code to be executed by the SC12

device.

3. Once the executable file is generated it has to be transferred to the device using

the FTP protocol. In the laboratory it will be explained how this transfer can be

performed.

5. Development of a hardware control application using a web interface

The goal of this laboratory session is to modify the file proc.c in order to permit a

physical realisation or the actions explained in the previous section. For this purpose the

board that contains the SC12 device will be connected to a DIO4 board. This board

contains, among other elements, 8 LEDs that can be managed independently. The

voltage applied to the anode of each LED comes from the output of a latch whose

enable signal is called LEDG (active high). This enable signal is the same for all the

latches.

The file proc.c has to be modified using the functions defined in the file hard.c, so that

the first LED in the DIO4 board can be:

 Activated

 Deactivated

 Activated/deactivated periodically. The activation/deactivation interval will be 1

second.

To complete the development the following considerations have to be taken into

account:

 The signal LEDG is connected to the pin PIO0 of the SC12 device.

Digital Systems - Laboratory Session P1

12

 The input data of the latch actuating on the first LED of the DIO4 board is

connected to the pin PIO1 of the SC12 device.

 The functions to be used from those defined in the file hard.c are:

o void EnablePIO(unsigned char PIN, unsigned char mode): This function

initialises a given input/output pin of the SC12 device. The parameter

PIN indicates the number of the pin to be initialised (a value from 0 to

13), while the parameter mode determines how the pin will be used (a

value 4 corresponds to an input pin, while a value 5 corresponds to an

output pin with an initial value of 0).

o void WritePIO (unsigned char PIN, unsigned char value): This function

permits to write a value on a given input/output pin of the SC12 device.

The parameter PIN indicates the number of the pin to be written (a value

from 0 to 13), while the parameter value has to specify the value to be

written.

o void api_sleep (int ms): This function hold the system in sleep mode for

a number of milliseconds equal to the value specified for the parameter

ms.

 The file web.c contains a global variable called parameter_value. This variable

indicates the action to be takes. When its value is 0 the LED has to be

deactivated, when its value is 1 the LED has to be activated, and when its value

is 2 the LED has to be activated and deactivated periodically.

 If the program is structured as an infinite loop, it will be necessary to call within

this loop the function api_sleep at least once (for instance, with a value for the

parameter ms equal to 10), so as to avoid the system to become blocked by the

program execution.

